If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-7x-3=0
a = 12; b = -7; c = -3;
Δ = b2-4ac
Δ = -72-4·12·(-3)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{193}}{2*12}=\frac{7-\sqrt{193}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{193}}{2*12}=\frac{7+\sqrt{193}}{24} $
| 12v+10v+4=80 | | -26+7x=40+x | | x-2/x+3=1/2 | | 8x+x=11x | | 1.86g-13=0.95 | | 2.3+x=8.6 | | x/5+2(x+12)=3(x+x)-71 | | V+6=11+2v | | 7n-21+4n-20=10 | | Z(z+5)=-6 | | 2x+12=x+38 | | x+15+3x+1=8x-16 | | -8+4t=32 | | 4•3b=24 | | 5x+7+10x+6=17x+9 | | 6+-5t=105 | | -147=7(1-4n)+6n | | 2(x+3)+6=4x+3 | | 6x=12=2x=32 | | 4-3b=24 | | x+5+14=9x-13 | | (2z+3)(2+z)=0 | | 3/4n-14=8 | | r+5+7r=-19 | | x-5+16=2x-4 | | 2(h+)=5h-7 | | 3=4x+3+8x | | Y+7=5.4(x+16) | | ((10x+4)/(x-5))=4 | | 3.8=p3-7.2 | | 110=6n-2(-6-4n) | | x^2-10=12x |